当前位置: 首页 > news >正文

做更好的自己 网站江苏网页定制

做更好的自己 网站,江苏网页定制,百度SEO网站,小程序开发哪里有单词拆分 给定一个非空字符串 s 和一个包含非空单词的列表 wordDict,判定 s 是否可以被空格拆分为一个或多个在字典中出现的单词。 说明: 拆分时可以重复使用字典中的单词。 你可以假设字典中没有重复的单词。 示例 1: 输入: s “leet…

单词拆分

给定一个非空字符串 s 和一个包含非空单词的列表 wordDict,判定 s 是否可以被空格拆分为一个或多个在字典中出现的单词。

说明:

拆分时可以重复使用字典中的单词。

你可以假设字典中没有重复的单词。

示例 1:

  • 输入: s = “leetcode”, wordDict = [“leet”, “code”]
  • 输出: true
  • 解释: 返回 true 因为 “leetcode” 可以被拆分成 “leet code”。

示例 2:

  • 输入: s = “applepenapple”, wordDict = [“apple”, “pen”]
  • 输出: true
  • 解释: 返回 true 因为 “applepenapple” 可以被拆分成 “apple pen apple”。
  • 注意你可以重复使用字典中的单词。

示例 3:

  • 输入: s = “catsandog”, wordDict = [“cats”, “dog”, “sand”, “and”, “cat”]
  • 输出: false

​ 单词视为物品,字符串视为背包,又因为可以重复使用,所以是完全背包;

​ 动规五部曲:

​ 1.确定dp数组以及下标的含义

dp[i] : 字符串长度为i的话,dp[i]为true,表示可以拆分为一个或多个在字典中出现的单词

​ 2.确定递推公式

​ 如果确定dp[j] 是true,且 [j, i] 这个区间的子串出现在字典里,那么dp[i]一定是true。(j < i )。

​ 所以递推公式是 if([j, i] 这个区间的子串出现在字典里 && dp[j]是true) 那么 dp[i] = true。

​ 3.dp数组如何初始化

​ 从递推公式中可以看出,dp[i] 的状态依靠 dp[j]是否为true,那么dp[0]一定是true,否则递推下去后面都都是false了;

​ 那么dp[0]有没有意义呢?dp[0]表示如果字符串为空的话,能否在字典中找到,很明显应该是false;

​ 但题目中说了“给定一个非空字符串 s” 所以测试数据中不会出现i为0的情况,那么dp[0]怎样定义其实无所谓了;

​ 下标非0的dp[i]初始化为false,只要没有被覆盖说明都是不可拆分为一个或多个在字典中出现的单词;

​ 其实很多时候都会出现这种dp[0]赋值和意义不一致的情况,以递推公式为主;

​ 4.确定遍历顺序

​ 讨论两层for循环的前后顺序。

如果求组合数就是外层for循环遍历物品,内层for遍历背包

如果求排列数就是外层for遍历背包,内层for循环遍历物品

​ 而本题其实求的是排列数, 拿 s = “applepenapple”, wordDict = [“apple”, “pen”] 举例;

​ “apple”, “pen” 是物品,那么我们要求 物品的组合一定是 “apple” + “pen” + “apple” 才能组成 “applepenapple”;

​ “apple” + “apple” + “pen” 或者 “pen” + “apple” + “apple” 是不可以的,此处就是强调物品之间顺序;

​ 所以一定是先遍历背包,再遍历物品

	for(int i = 1; i < s.size(); i++) {for(int j = 0; j < i; j++){string tempWord = s.substr(j, i - 1);if(dict.find(tempWord) != dict.end() && dp[j] == true){dp[i] = true;}}}

​ 5.打印dp数组:

class Solution {
public:bool wordBreak(string s, vector<string>& wordDict) {unordered_set<string> wordSet(wordDict.begin(), wordDict.end());//转化为unordered_set(即wordSet)的原因是为了提高查找效率vector<bool> dp(s.size() + 1, 0);dp[0] = true;for(int i = 1; i <= s.size(); i++) {for(int j = 0; j < i; j++){string tempWord = s.substr(j, i - j);if(wordSet.find(tempWord) != wordSet.end() && dp[j] == true){dp[i] = true;}}}return dp[s.size()];}
};

​ 时间复杂度:O(n^3),因为substr返回子串的副本是O(n)的复杂度(这里的n是substring的长度)

​ 空间复杂度:O(n)

多重背包

​ 多重背包本质上可以视为01背包,因为数量仍然是有限个;

​ 每件物品最多有M件可用,把M件摊开,其实01背包问题了;

​ 但是不能完全按照01背包的代码来写,因为vector扩容是一件非常耗时的事情;

​ 递推公式写成如下的形式,把每种商品遍历的个数放在01背包里面在遍历一遍,再递推,就解决了:

d p [ j ] = m a x ( d p [ j ] , d p [ j − k ∗ w e i g h t [ i ] ] + k ∗ v a l u e [ i ] ) dp[j] = max(dp[j], dp[j - k * weight[i]] + k * value[i]) dp[j]=max(dp[j],dp[jkweight[i]]+kvalue[i])

#include<iostream>
#include<vector>
using namespace std;
int main() {int bagWeight,n;cin >> bagWeight >> n;vector<int> weight(n, 0);vector<int> value(n, 0);vector<int> nums(n, 0);for (int i = 0; i < n; i++) cin >> weight[i];for (int i = 0; i < n; i++) cin >> value[i];for (int i = 0; i < n; i++) cin >> nums[i];vector<int> dp(bagWeight + 1, 0);for(int i = 0; i < n; i++) { // 遍历物品for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量// 以上为01背包,然后加一个遍历个数for (int k = 1; k <= nums[i] && (j - k * weight[i]) >= 0; k++) { // 遍历个数dp[j] = max(dp[j], dp[j - k * weight[i]] + k * value[i]);}}}cout << dp[bagWeight] << endl;
}

​ 时间复杂度:O(m × n × k),m:物品种类个数,n背包容量,k单类物品数量

背包问题总结

递推公式

​ 问能否能装满背包(或者最多装多少):dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]); ,对应题目如下:

​ 动态规划:416.分割等和子集(opens new window)

​ 动态规划:1049.最后一块石头的重量 II(opens new window)

问装满背包有几种方法:dp[j] += dp[j - nums[i]] ,对应题目如下:

​ 动态规划:494.目标和(opens new window)

​ 动态规划:518. 零钱兑换 II(opens new window)

​ 动态规划:377.组合总和Ⅳ(opens new window)

​ 动态规划:70. 爬楼梯进阶版(完全背包)(opens new window)

问背包装满最大价值:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]); ,对应题目如下:

​ 动态规划:474.一和零(opens new window)

问装满背包所有物品的最小个数:dp[j] = min(dp[j - coins[i]] + 1, dp[j]); ,对应题目如下:

​ 动态规划:322.零钱兑换(opens new window)

​ 动态规划:279.完全平方数

遍历顺序

对于01背包

​ 二维dp数组的两个for遍历的先后循序是可以颠倒的;

​ 一维dp数组的两个for循环先后循序一定是先遍历物品,再遍历背包容量

​ 对于完全背包

​ 因为dp[j] 是根据下标j之前所对应的dp[j]计算出来的;

​ 只要保证下标j之前的dp[j]都是经过计算的就可以了,颠倒是不会影响结果的;

​ 但如果题目有所变动,不再是求纯完全背包问题:

如果求组合数就是外层for循环遍历物品,内层for遍历背包

for循环先后循序一定是先遍历物品,再遍历背包容量

​ 对于完全背包

​ 因为dp[j] 是根据下标j之前所对应的dp[j]计算出来的;

​ 只要保证下标j之前的dp[j]都是经过计算的就可以了,颠倒是不会影响结果的;

​ 但如果题目有所变动,不再是求纯完全背包问题:

如果求组合数就是外层for循环遍历物品,内层for遍历背包

如果求排列数就是外层for遍历背包,内层for循环遍历物品

http://www.mmbaike.com/news/107884.html

相关文章:

  • 网站客服电话下载百度免费
  • 网站建设海报泉州关键词搜索排名
  • 大学生创新项目申报书 做网站广州搜索seo网站优化
  • 杭州做网站公司新东方托福班价目表
  • 做网站收款支付宝接口免费域名解析平台
  • 做一网站要什么软件海外网站推广的公司
  • 电商平台网站建设功能介绍免费发布广告
  • 北京做视觉网站今日头条重大消息
  • 学平面设计网站谷歌广告联盟一个月能赚多少
  • 编程开发工具有哪些郑州百度推广seo
  • word贴到wordpressseo推广代运营
  • 网站建设的毕业设计成果外贸网站推广seo
  • 恩做网站动态页面好seo搜索引擎优化心得体会
  • 公司网站建设价格标准长沙今日头条新闻
  • 个人网页设计作品手绘上海seo公司排名榜
  • 电子政务网站建设网站制作报价表
  • 香河住房和城乡建设局网站济南全网推广
  • 外包小程序开发的价格推推蛙seo
  • 中国企业网是什么级别的媒体贵港seo关键词整站优化
  • 做网站婚介简历怎么写互联网100个创业项目
  • 今天战争最新消息新闻重庆seo推广
  • seo网站营销推广全程实例pdf搜索关键词的工具
  • 凡科建站是不是关闭企业网站福州seo服务
  • 东莞网站建站服务公司网站建设与营销经验
  • 北京市网站建设公司排名外贸谷歌推广
  • 网站搬家seoseo综合查询中的具体内容有哪些
  • 毕业设计网站建设软件项目400个成品短视频
  • 做网站做的好的公司扬中网站制作
  • 个人做负面网站犯法不电商怎么做
  • 武汉做网站的公司哪家好口碑营销的前提及好处有哪些?